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Abstract

The formation of soot in premixed flames of methane, ethane, propane, and butane was studied at three different equivalence ratios. Soot

particle sizes, number densities, and volume fractions were determined using classical light scattering measurement techniques. The

experimental data revealed that the soot properties were sensitive to the fuel type and combustion parameter equivalence ratio. Increase in

equivalence ratio increased the amount of soot formed for each fuel. In addition, methane flames showed larger particle diameters at higher

distances above the burner surface and propane, ethane, and butane flames came after the methane flames, respectively. Three-layer, feed-

forward type artificial neural networks having seven input neurons, one output neuron, and five hidden neurons for soot particle diameter

predictions and seven hidden neurons for volume fraction predictions were used to model the soot properties. The network could not be

trained and tested with sufficient accuracy to predict the number density due to a large data range and greater uncertainty in determination of

this parameter. The number of complete data set used in the model was 156. There was a good agreement between the experimental and

predicted values, and neural networks performed better when predicting output parameters (i.e. soot particle diameters and volume fractions)

within the limits of the training data.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Particulate formation in combustion systems is a major

concern due to their environmental and health effects. Soot

is the product of incomplete combustion of hydrocarbon

fuels and consists mainly of carbon (,90%). Carbon

surfaces are known to be catalytic for the conversion of SO2

to SO4
22, and NO to NO2 or NO3

2 in the atmosphere [1].

Soot is one of the first recognized environmental

carcinogens. The data in the literature suggest that there

is a strong correlation between the concentrations of soot in

the air and morbidity from bronchitis [2]. Soot also plays

an important role in the development of various toxico-

logical conditions in humans. Polycyclic aromatic hydro-

carbons (PAH), the largest class of chemical carcinogens

are mostly adsorbed to the particles at atmospheric

conditions. Therefore, combustion emitted small soot

particles provide a transport mechanism for adsorbed PAH.

The formation and emission of soot from combustion

processes have been studied extensively [3–6]. The amount

of soot formed for a specific fuel depends on the type of

flame and other physical parameters such as temperature

and residence time. Baumgartner et al. [7] investigated the

soot formation in atmospheric pressure, laminar, premixed

hydrocarbon–air flames with the following fuels: acetylene,

benzene, n-hexane, n-heptane, cyclohexane, cyclohexene,

naphthalene, pyridine, thiophene, furan, and mixtures of

ethylene with hydrogen. The various mixtures were tested

for different C/O ratios and flow velocities using a flat flame

burner. Their experimental results imply that the general

characteristics of soot formation, coagulation, and mass

growth are similar for all the flames studied. They

approximated the soot volume fraction growth by a first

order expression with a temperature dependent rate
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constant. In addition, the amount of soot finally present

varied with C/O ratio and also depended on temperature

above 1500 K. Recently, Melton et al. [8,9] investigated the

effects of equivalence ratio (i.e. (fuel/oxidizer) ratio divided

by the stoichiometric (fuel/oxidizer) ratio) on the formation

of PAH and soot in premixed methane/oxygen/argon and

ethane/oxygen/argon flames. They determined the equival-

ence ratio dependencies of soot volume fraction and species

mole fraction profiles using an empirical formula. Their

experimental results showed that the sensitivity of soot

volume fraction to equivalence ratio was about the same as

those of aromatic species such as benzene, phenylacetylene,

and naphthalene.

The detailed chemical kinetic mechanisms have been

used extensively to model soot formation. These mechan-

isms include a large number of species in a large number of

elementary reactions, and quality of predictions depends

upon the quality and quantity of the thermochemical data of

species and upon the kinetics and mechanisms of individual

elementary reactions [10]. Frenklach et al. [11] investigated

the relative sooting tendencies of 1,3-butadiene, benzene

and ethylene for shock-tube pyrolysis conditions by a

detailed kinetic model. It has been found that the fuel

structure influences the soot formation by a change in the

induction time and initial rate of soot formation for shock-

tube conditions. Recently, McEnally et al. [12] applied the

simple Thermocouple Particle Densitometry technique to

measure the absolute soot volume fractions in a several

laminar non-premixed flames. Their method was based on

the extraction of soot volume fraction from rapid insertion

junction-temperature history of a thermocouple. Alterna-

tively, Artificial Neural Network (ANN) approach has also

been applied successfully for the prediction of pollutant

emissions and other environmental problems. Hao et al. [13]

used an ANN model to predict NOx emission from a

pulverized coal burned utility burner under various operat-

ing condition and coal quality. The ANN approach has also

been applied to predict the atmospheric PAH emissions

from a passenger car diesel engine as functions of fuel

parameters (aromatic content, cetane index, gross heat

power, nitrogen and sulphur content) and operating

conditions (engine speed and torque) [14]. Diesel particulate

emissions from the same engine have also been studied by

Lucas et al. [15] using neural network modeling.

In this study, both experimental and ANN modeling

techniques were used to investigate the soot formation in

laminar, premixed, atmospheric pressure fuel/oxygen/argon

flames. Four different hydrocarbon flames (methane, ethane,

propane, and butane) at three different fuel-rich conditions

(equivalence ratios of 2.4, 2.5, and 2.6) were studied.

2. Experimental

An illustration of the experimental system used is shown

in Fig. 1. Atmospheric pressure, premixed, flat flames of

fuel/O2/Ar were stabilized over a 50 mm diameter porous,

bronze burner. Ar was also used as a shield gas to protect the

flames from surrounding air. The purities of the gases used

in this study were 99.99% (Matheson, Rancho Cucamonga,

Fig. 1. Experimental setup.

F. Inal et al. / Fuel 82 (2003) 1477–14901478



CA). The flow rates of reactant gases were controlled by

calibrated mass flow controllers (Model 247C, MKS). The

shield gas was regulated by a calibrated rotameter.

Soot particle diameters, number densities and volume

fractions were determined using classical laser light

scattering and extinction measurements [16]. The light

source used was a tunable argon ion laser with 514.5 nm line

and 1.0 W power (Spectra Physics, 2037). A photomulti-

plier tube (PMT) (Hamamatsu, R1463) was used to measure

the relative intensity of that fraction of the incident light

scattered at 908 by the soot particles in the flame being

investigated. The transmitted light was measured with a

photodiode (Hamamatsu, 51336-BQ) and recorded with an

oscilloscope. Two devices were used to obtain high signal to

noise ratio. (1) Narrow band-pass filters were placed in front

of the PMT and photodiode. (2) The incident laser light was

chopped at a frequency of 1000 Hz and the PMT signal was

read out with a lock-in amplifier (EG&G 5205) which was

synchronized with the chopper. The lock-in amplifier read

out only that component of the PMT output pulsed with the

same frequency and phase as the chopper. The light

scattering setup was calibrated against a known, particle-

free flow composed of argon. Soot particle size, number

density, and volume fraction calculations were carried out

by assuming monodisperse particles having a complex

refractive index of 1.54–0.58i [16,17].

Temperature measurements were obtained with a silicon

oxide-coated 0.15 mm Pt – 13% Rh/Pt thermocouple

(Omega Engineering Inc.). After each measurement,

thermocouple was withdrawn from the flame and the

accumulated soot was burnt off using a small propane

torch. The temperature profiles reported in this study

correspond to direct thermocouple readings and were not

corrected for radiation losses.

Temperature and soot profiles were obtained by moving

the entire burner assembly vertically up or down. The

positional accuracy associated with these measurements

was estimated to be ^0.2 mm.

3. Artificial neural networks

The development of ANNs began approximately 50

years ago, inspired by a desire to understand the human

brain and emulate its functioning. Within the last decade, it

has experienced a huge resurgence due to the development

of more sophisticated algorithms and the emergence of

powerful computer tools. Mathematically, an ANN is often

viewed as a universal approximator. The ability to identify a

relationship from given patterns make it possible for ANNs

to solve large-scale complex problems such as pattern

recognition, non-linear modeling, classification, associ-

ation, and control. Consequently, ANNs have found

applications in such diverse areas as neurophysiology,

physics, environmental engineering, electrical engineering,

chemical engineering, computer science, robotics, image

processing, financing, and others.

In this study, the common three-layer feed-forward type

of ANN, as shown in Fig. 2, was considered for the

prediction of soot properties. In a feed-forward network, the

input quantities are fed into input layer neurons, which in

turn pass them on to the hidden layer neurons after

multiplying by a weight. A hidden layer neuron adds up

the weighted input received from each input neuron,

associates it with a bias, and then passes the result on

through a non-linear transfer function (Fig. 3). The output

neurons do the same operation as that of a hidden neuron.

Before its application to any problem, the network is first

trained, whereby the target output at each output neuron is

compared with the network output and the difference or

error is minimized by adjusting the weights and biases

through some training algorithm. Training in ANNs consists

of three elements: (1) weights between neurons that define

the relative importance of the inputs, (2) a transfer function

that controls the generation of the output from a neuron,

(3) learning laws that describe how the adjustments of

Fig. 2. Architecture of a three-layer feed-forward type neural network.

Fig. 3. Structure of a hidden layer neuron.
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the weights are made during training. During training, a

neuron receives inputs from a previous layer, weights each

input with a prearranged value, and combines these

weighted inputs. The combination of the weighted inputs

is represented as

netj ¼
X

xivij ð1Þ

where netj is the summation of the weighted input for the jth

neuron; xi the input from the ith neuron to the jth neuron;

and vij the weight from the ith neuron in the previous layer

to the jth neuron in the current layer.

The netj is passed through a transfer function to

determine the level of activation. If the activation of a

neuron is strong enough, it produces an output that is sent as

an input to other neurons in the successive layer. In this

study, sigmoid function was employed as an activation

function in the training of the network. The sigmoid

function is a bounded, monotonic, non-decreasing function

that provides a graded, non-linear response. This function

enables a network to map any non-linear process. One of the

main reasons that the sigmoid function was employed is

because of its simplicity of its derivative that is required

during the training process [18]. The sigmoid function is

expressed as:

f ðnetjÞ ¼
1

1 þ e2netj
ð2Þ

The learning of ANNs was accomplished by a back-

propagation algorithm. Back-propagation is the most

commonly used supervised training algorithm in the

multi-layered feed-forward networks. In back-propagation

networks, information is processed in the forward direction

from the input layer to the hidden layer and then to the

output layer (Figs. 2 and 3). The objective of a back-

propagation network is, by minimizing a predetermined

error function, to find the optimal weights which would

generate an output vector Y ¼ ðy1; y2;…; ypÞ as close as

possible to target values of output vector T ¼ ðt1; t2;…; tpÞ

with a selected accuracy. A predetermined error function

has the following form [18]

E ¼
X

P

X

p

ðyi 2 tiÞ
2 ð3Þ

where yi is the component of an ANN output vector Y; ti the

component of a target output vector T; p the number of

output neurons; and P the number of training patterns.

The least square error method, along with a generalized

delta rule, was used to optimize the network weights. The

gradient descent method, along with the chain rule of

derivatives, was employed to modify network weights as

vnew
ij ¼ vold

ij 2 d
›E

›vij

ð4Þ

where d is the learning rate which is used to increase the

chance of avoiding the training process being trapped in

local minima instead of global minima.

4. Results and discussion

The pre-combustion compositions of the 12 flames

studied are given in Table 1. Before presenting results, a

number of issues related to these conditions must be stated.

First, the equivalence ratios were determined to provide

stable sooting flames after a number of different possibilities

were explored. At lower equivalence ratios, flames did not

produce as much soot. Flames above an equivalence ratio of

2.6 were too unstable. Second, in all the flames of methane,

ethane, propane, and butane, the volumetric flow rates of

these gases were maintained constant at 1.88, 1.71, 1.20,

and 1.07 l/min, respectively, while the flow rates of oxygen

and argon were varied. Third, the argon dilution was kept at

45% in all flames. This allowed for a better control of the

flame temperatures.

The temperature profiles for the flames studied are

presented in Fig. 4. The data points represent experimental

results and solid lines represent trends in all the figures

given in this study. For each fuel, lower equivalence ratio

flames were positioned closest to the burner surface because

of their higher burning velocities. In contrast, the equival-

ence ratio of 2.6 flames had lowest burning velocity and

were located farthest from the burner. It is also important to

note that the differences in peak temperatures were about

5 K for methane flames, 15 K for ethane flames, 20 K for

propane flames, and 50 K for butane flames. In sooting

flames, one of the major problems in temperature measure-

ment is the coating of the thermocouple junction by soot

particles. Although the accumulated soot on thermocouple

bead was burnt off after each measurement, soot deposition

was inevitable at higher distances above the burner surface.

This deposition process increased the radiative heat loses

from the thermocouple bead and resulted in lower

Table 1

Experimental conditions used in the study of soot formation in premixed

hydrocarbon flames

Methane Ethane Propane Butane

Equivalence ratio: 2.4

Fuel composition (mole%) 29.98 22.38 17.83 14.82

Oxygen composition (mole%) 25.04 32.59 37.15 40.17

Ar composition (mole%) 44.98 45.03 45.02 45.01

Total flow rate (lpm) 6.27 7.64 6.73 7.22

Equivalence ratio: 2.5

Fuel composition (mole%) 30.57 22.92 18.32 15.29

Oxygen composition (mole%) 24.39 32.04 36.64 39.71

Ar composition (mole%) 45.04 45.04 45.04 45.00

Total flow rate (lpm) 6.15 7.46 6.55 7.00

Equivalence ratio: 2.6

Fuel composition (mole%) 31.07 23.46 18.81 15.71

Oxygen composition (mole%) 23.97 31.55 36.21 39.35

Ar composition (mole%) 44.96 44.99 44.98 44.93

Total flow rate (lpm) 6.05 7.29 6.38 6.81

Calculated at 298 K and 1 atm.
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temperature readings. The previous studies have shown that

the temperature recorded by a thermocouple that was

cleaned between measurements were higher than those

recorded by an uncleaned thermocouple by as much as

50 8C in post flame regions [19].

Soot properties were calculated by assuming monodis-

perse soot particles that were smaller than the wavelength of

the light used to comply with the Rayleigh scattering

approximation. However, non-spherical and polydisperse

soot occurs within the flame due to the agglomeration of

primary soot particles. The Rayleigh approximation has

been demonstrated to have negligible effect on the

determination of the soot volume fraction and hold to

within a factor of three for the particle diameters ðdpÞ:

However, because of d23
p dependence of particle number

density, Rayleigh analysis causes a significant uncertainty in

number density estimation [20]. Soot volume fractions,

particle diameters, and number densities are presented in

Figs. 5–7. The rate-controlling step to soot emission is the

rate of formation of the first aromatic ring [21]. In a flame,

the hydrocarbon fuel is decomposed into small hydrocarbon

radicals from which mostly acetylene is formed. Frenklach

and Wang [22] proposed that the formation of first aromatic

ring in flames of non-aromatic fuels usually begins with

vinyl addition to acetylene. Vinylacetylene is formed at high

temperatures, followed by acetylene addition to n-C4H3

radical formed by the H-abstraction from the vinylacety-

lene. The benzene can also be formed by combination of

propargyl radicals producing benzene or phenyl [23].

Starting from an initial aromatic structure, the larger

Fig. 4. Flame temperatures.
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aromatics can be built by the addition of non-aromatics such

as C2H2 and C4H5. The addition of aromatic radicals to non-

aromatics can also lead to condensed ring compounds [24].

The aromatic structures then reach a large enough size to

turn into particle nuclei. Small soot particles are grown

either by addition from the gas phase or by coalescence. The

formation of larger soot particles by coalescing small

particles is known as coagulation.

As can be seen from Fig. 5, for each fuel, the soot volume

fraction or amount of soot was initially only small fraction

of the final amount. As soot volume fraction increases, the

particles also grow in size (Fig. 6). In contrast, the particle

number density decreases by coagulation and gradually

levels off (Fig. 7). This process leads to an increase in

particle size and a simultaneous increase in soot volume

fraction. The soot volume fractions reached the amount of

3.08 £ 1027, 3.84 £ 1027, 8.78 £ 1027, 10.36 £ 1027 in

methane, ethane, propane, and butane flames, respectively,

at equivalence ratio of 2.6. The lower equivalence ratio

flames produced less soot due to the flame temperature

consideration (Fig. 5). The temperature affects the two

competing processes occurring in premixed sooting flames:

the pyrolysis rate of the fuel intermediate leading to the

precursors and the rate of oxidative (OH radical) attack on

these precursors [21]. Both rates increase with temperature,

but the oxidative attack rate increases faster.

Methane flames showed larger particle diameters at

higher distances above the burner surface and propane,

Fig. 5. Soot volume fractions.
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ethane, and butane flames came after the methane flames,

respectively (Fig. 6). The maximum soot particle diameters

were about 22, 25 and 27 nm in methane flames at

equivalence ratios of 2.4, 2.5, and 2.6, respectively. Senkan

and Castaldi [25] reported an increased production of PAH

while the acetylene and soot levels were less in the laminar,

premixed methane flame compared to ethane under similar

conditions. These interesting experimental results were

supported by a recent study of Roesler et al. [26] in an

isothermal laminar flow reactor at atmospheric pressure.

Roesler et al. [26] showed that methane contributes

significantly in determining the growth rate of aromatic

species and soot in fuel-rich premixed combustion. Methane

increases the methyl radical concentration and the presence

of methyl radical promotes the formation of hydrocarbon

species containing an odd-number of carbon atoms, which

would then accelerate benzene and naphthalene formation

[25,26]. Although we have measured larger particle

diameters for methane flames at higher distances above

the burner surface, soot volume fraction steadily increased

with increasing carbon number in the fuel and increasing

equivalence ratio for each fuel (Fig. 5). Likewise, soot

number density also increased with increasing carbon

number in the fuel (Fig. 7).

ANNs having seven input neurons and one output neuron

were used to model the soot properties. After several trial and

error runs for training and testing, it was found that the

utilization of two neural networks instead of one with two

Fig. 6. Soot particle diameters.
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outputs provides better predictions. The input variables used

in the models were distance from the burner surface, flame

temperature, equivalence ratio, C/H ratio, fuel flow rate,

oxygen flow rate, and argon flow rate. Soot particle diameters

and volume fractions were used as the outputs for the neural

networks. The input and output parameters are given in Table

2 with their minimum and maximum values. The number of

hidden neurons for the network was five for the particle

diameters and was seven for the volume fractions. Due to the

greater uncertainty in the determination of number density

that has been mentioned before and a large minimum–

maximum range (i.e. 2 £ 1016–2 £ 1019) of this parameter,

Fig. 7. Soot number densities.

Table 2

Input and output parameters of neural networks

Parameter Minimum Maximum

Distance from the burner surface (mm) 3 15

Temperature (K) 1167 1647

Equivalence ratio 2.4 2.6

C/H ratio 0.25 0.4

Fuel flow rate (lpm) 1.07 1.88

Oxygen flow rate (lpm) 1.45 2.90

Argon flow rate (lpm) 2.72 3.44

Soot particle diameter (nm) 3.17 27.35

Volume fraction £ 107 0.03 10.60
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network was not trained and tested with sufficient accuracy.

Therefore, the modeling results for only particle diameters

and volume fractions were given here.

The performance of the neural networks was investigated

for the following two cases:

(I) The data for the methane, ethane, propane and butane

flames at equivalence ratios of 2.4 and 2.6 were used as

inputs to predict the particle diameters and volume

fractions of the same flames at an equivalence ratio of

2.5.

(II) Methane, ethane, and propane flame data at

equivalence ratios of 2.4, 2.5, and 2.6 were used

to predict the particle diameters and volume

fractions of butane flames at the same equivalence

ratios.

Fig. 8. Experimental and ANN predicted values of particle diameters for Case I (a) training set, (b) testing set.
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One hundred and fifty six data sets were divided into two

groups for training and testing, each containing 104 and 52

sets for Case I and 117 and 39 sets for Case II, respectively.

The predicted and experimental values of particle

diameters and volume fractions are shown in Figs. 8 and 9

for Case I. As can be seen from these figures, the

comparison of the predicted values and experimental

measurements shows good agreement. The correlation

coefficients ðR2Þ of the particle diameters and volume

fractions were 0.98 and 0.99 for the training sets and 0.96

and 0.96 for the testing sets, respectively. The average

absolute errors were 14.58% for the particle diameters and

17.36% for the volume fractions in testing.

R2 values of the particle diameters and volume fractions

in Case II were 0.99 and 0.99 for the training sets and 0.92

and 0.86 for the testing sets, respectively (Figs. 10 and 11).

Fig. 9. Experimental and ANN predicted values of volume fractions for Case I (a) training set, (b) testing set.
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The average absolute errors in testing for particle diameters

(18.90%) and volume fractions (27.15%) were larger than

those in Case I. This is because the most of the predicted

butane data was outside the data range used in the training.

The effects of each input variable on soot particle

diameter and volume fraction were also investigated. The

analysis results indicated that the effects of flow rates of fuel,

oxygen and argon on particle diameter and volume fraction

were insignificant, and the related results, for the sake of

brevity, are not presented herein. On the other hand, the

effects of distance from the burner surface, temperature,

equivalence ratio and C/H ratio were significant

(Figs. 12–15). As can be seen from Fig. 12, soot particle

diameter and volume fraction increased with increase in

Fig. 10. Experimental and ANN predicted values of particle diameters for Case II (a) training set, (b) testing set.
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distance from the burner surface. Due to the stronger

temperature dependence of the rate of oxidative attack on

soot precursors in premixed sooting flames, as we discussed

before, both particle diameter and volume fraction

decreased with increasing temperature (Fig. 13). Soot

volume fraction and particle diameter increased with

increasing equivalence ratio (Fig. 14). However, the

equivalence ratio dependence was not strong for the case

of particle diameter. The change in C/H ratio affected

particle diameter and volume fraction differently (Fig. 15).

The particle diameter decreased with increasing C/H ratio.

However, the volume fraction exhibited increasing trend.

These modeling results agree with our experimental

measurements.

Fig. 11. Experimental and ANN predicted values of volume fractions for Case II (a) training set, (b) testing set.
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Fig. 12. Effect of distance from burner surface on (a) particle diameter and

(b) volume fraction.

Fig. 13. Effect of temperature on (a) particle diameter and (b) volume

fraction.

Fig. 14. Effect of equivalence ratio on (a) particle diameter and (b) volume

fraction.

Fig. 15. Effect of C/H ratio on (a) particle diameter and (b) volume

fraction.
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5. Conclusion

In conclusion, our experimental results revealed that the

soot properties were influenced by the fuel type and

equivalence ratio. Increase in equivalence ratio increased

the amount of soot formed for each fuel. In addition, butane

flame produced the largest amount of soot among the

hydrocarbon fuels studied. However, the particle sizes in

methane flames were consistently larger than those

measured in other flames at higher distances above the

burner surface. In addition, an ANN approach was

successfully applied to predict soot particle diameters and

volume fractions for two cases. The comparison of the ANN

predictions with the experimental values was satisfactory.

Furthermore, the sensitivity analysis results were also

consistent with the experimental observations. Hence, the

ANNs could be a useful tool in pollutant formation studies.
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